AppZen is the leader in autonomous spend-to-pay software. Its patented artificial intelligence accurately and efficiently processes information from thousands of data sources so that organizations can better understand enterprise spend at scale to make smarter business decisions. It seamlessly integrates with existing accounts payable, expense, and card workflows to read, understand, and make real-time decisions based on your unique spend profile, leading to faster processing times and fewer instances of fraud or wasteful spend. Global enterprises, including one-third of the Fortune 500, use AppZen’s invoice, expense, and card transaction solutions to replace manual finance processes and accelerate the speed and agility of their businesses. To learn more, visit us at www.appzen.com.
About the role:
We are looking for experienced Data Scientists with strong Python expertise to join our growing AI/ML team. You’ll collaborate with a world-class group of machine learning engineers and scientists working on cutting-edge NLP, document understanding, and enterprise automation use cases.
Key Responsibilities:
Design, build, and evaluate models for NLP, document extraction, classification, and generative tasks.
Develop end-to-end ML pipelines from data pre-processing to model inference and monitoring.
Work on productionizing models including model packaging, API integration, and deployment using Docker/Kubernetes.
Analyse model behaviour, debug Python code and optimize performance in large-scale environments.
Translate prototypes into scalable, production-grade ML services, with a focus on reliability and performance.
Contribute to model and system monitoring, logging, and performance optimization.
Collaborate with product managers and engineering teams to turn business requirements into ML-driven product features.
Stay current with research and advancements in transformer-based architectures, LLMs (e.g., GPT, BERT), and generative AI techniques.
Must-Have Qualifications:
2–5 years of professional experience in Python, with strong debugging, profiling, and performance optimization skills.
Solid understanding of python data structures, algorithms, and software engineering best practices in ML development.
Hands-on experience with NLP and modern ML frameworks like PyTorch, TensorFlow, or Hugging Face Transformers.
Applied experience with transformer models, LLMs, or generative AI in real-world scenarios.
Experience with model evaluation, including designing meaningful metrics, tracking model drift, and optimizing performance in production.
Ability to manage multiple priorities in a fast-paced and collaborative environment.
B.E./ B.Tech or higher in Computer Science, Engineering, or a related technical field.
Nice-to-Haves:
Experience building and deploying containerized ML services with Docker and CI/CD pipelines.
Skilled in designing and consuming RESTful Python APIs (e.g., FastAPI, Flask).
Experience with cloud services, particularly AWS (S3, SQS, etc.).
Familiarity with databases such as PostgreSQL and Redis.
Strong grasp of classical ML algorithms such as Logistic Regression, Random Forests, and XGBoost.
Ability to choose between heuristic, rule-based, and model-driven solutions pragmatically (e.g., regex vs ML).
Diese Cookies sind für das Funktionieren der Website erforderlich und können in unseren Systemen nicht abgeschaltet werden. Sie können Ihren Browser so einstellen, dass er diese Cookies blockiert, aber dann könnten einige Teile der Website nicht funktionieren.
Sicherheit
Benutzererfahrung
Zielgruppenorientierte Cookies
Diese Cookies werden über unsere Website von unseren Werbepartnern gesetzt. Sie können von diesen Unternehmen verwendet werden, um ein Profil Ihrer Interessen zu erstellen und Ihnen an anderer Stelle relevante Werbung zu zeigen.
Google Analytics
Google Ads
Wir benutzen Cookies
🍪
Unsere Website verwendet Cookies und ähnliche Technologien, um Inhalte zu personalisieren, das Nutzererlebnis zu optimieren und Werbung zu indvidualisieren und auszuwerten. Indem Sie auf Okay klicken oder eine Option in den Cookie-Einstellungen aktivieren, stimmen Sie dem zu.
Die besten Remote-Jobs per E-Mail
Schliess dich über 5'000+ Personen an, die wöchentlich Benachrichtigungen über Remote-Jobs erhalten!