AppZen is the leader in autonomous spend-to-pay software. Its patented artificial intelligence accurately and efficiently processes information from thousands of data sources so that organizations can better understand enterprise spend at scale to make smarter business decisions. It seamlessly integrates with existing accounts payable, expense, and card workflows to read, understand, and make real-time decisions based on your unique spend profile, leading to faster processing times and fewer instances of fraud or wasteful spend. Global enterprises, including one-third of the Fortune 500, use AppZen’s invoice, expense, and card transaction solutions to replace manual finance processes and accelerate the speed and agility of their businesses. To learn more, visit us at www.appzen.com.
About the role:
We are looking for experienced Data Scientists with strong Python expertise to join our growing AI/ML team. You’ll collaborate with a world-class group of machine learning engineers and scientists working on cutting-edge NLP, document understanding, and enterprise automation use cases.
Key Responsibilities:
Design, build, and evaluate models for NLP, document extraction, classification, and generative tasks.
Develop end-to-end ML pipelines from data pre-processing to model inference and monitoring.
Work on productionizing models including model packaging, API integration, and deployment using Docker/Kubernetes.
Analyse model behaviour, debug Python code and optimize performance in large-scale environments.
Translate prototypes into scalable, production-grade ML services, with a focus on reliability and performance.
Contribute to model and system monitoring, logging, and performance optimization.
Collaborate with product managers and engineering teams to turn business requirements into ML-driven product features.
Stay current with research and advancements in transformer-based architectures, LLMs (e.g., GPT, BERT), and generative AI techniques.
Must-Have Qualifications:
2–5 years of professional experience in Python, with strong debugging, profiling, and performance optimization skills.
Solid understanding of python data structures, algorithms, and software engineering best practices in ML development.
Hands-on experience with NLP and modern ML frameworks like PyTorch, TensorFlow, or Hugging Face Transformers.
Applied experience with transformer models, LLMs, or generative AI in real-world scenarios.
Experience with model evaluation, including designing meaningful metrics, tracking model drift, and optimizing performance in production.
Ability to manage multiple priorities in a fast-paced and collaborative environment.
B.E./ B.Tech or higher in Computer Science, Engineering, or a related technical field.
Nice-to-Haves:
Experience building and deploying containerized ML services with Docker and CI/CD pipelines.
Skilled in designing and consuming RESTful Python APIs (e.g., FastAPI, Flask).
Experience with cloud services, particularly AWS (S3, SQS, etc.).
Familiarity with databases such as PostgreSQL and Redis.
Strong grasp of classical ML algorithms such as Logistic Regression, Random Forests, and XGBoost.
Ability to choose between heuristic, rule-based, and model-driven solutions pragmatically (e.g., regex vs ML).
Estas cookies son necesarias para que el sitio web funcione y no se pueden desactivar en nuestros sistemas. Puede configurar su navegador para bloquear estas cookies, pero entonces algunas partes del sitio web podrían no funcionar.
Seguridad
Experiencia de usuario
Cookies orientadas al público objetivo
Estas cookies son instaladas a través de nuestro sitio web por nuestros socios publicitarios. Estas empresas pueden utilizarlas para elaborar un perfil de sus intereses y mostrarle publicidad relevante en otros lugares.
Google Analytics
Anuncios Google
Utilizamos cookies
🍪
Nuestro sitio web utiliza cookies y tecnologías similares para personalizar el contenido, optimizar la experiencia del usuario e indvidualizar y evaluar la publicidad. Al hacer clic en Aceptar o activar una opción en la configuración de cookies, usted acepta esto.
Los mejores empleos remotos por correo electrónico
¡Únete a más de 5.000 personas que reciben alertas semanales con empleos remotos!