We are seeking a motivated Machine Learning Intern to help design and test forecasting models that accelerate the decarbonization of the electricity grid. This role is ideal for students or recent graduates who want to apply their programming and analytical skills in a fast-paced environment, learn from experienced ML engineers, and contribute to solving real-world challenges in energy and climate. You will have the opportunity to work on cutting-edge problems in generative time-series forecasting, collaborate with a team of talented engineers and researchers, and see your ideas tested in real-world applications.
Requirements
- Currently pursuing or recently completed a BSc, MSc, or PhD in Computer Science, Electrical Engineering, Mathematics, Statistics, or a related field.
- Strong foundation in math, probability, statistics, and algorithms.
- Proficiency in Python and familiarity with ML libraries/frameworks (e.g., PyTorch, TensorFlow, scikit-learn, numpy, pandas).
- Good understanding of data structures and software engineering principles.
- Strong analytical and problem-solving skills.
- Excellent communication skills and ability to collaborate in a team environment.
Nice to Have
- Previous internship, research, or project experience in machine learning, forecasting, or time-series modeling.
- Familiarity with energy systems, climate tech, or optimization problems.
- Contributions to open-source ML projects or personal ML research.
What You’ll Gain
- Hands-on experience developing ML models with direct impact on renewable energy integration.
- Mentorship from experienced ML engineers and researchers.
- Exposure to cutting-edge methods in generative forecasting and grid decarbonization.
- Opportunity to contribute to meaningful, climate-focused innovation.
Responsibilites:
Assist in designing and implementing machine learning models for electricity grid forecasting.
Explore and prototype ML algorithms for generative time-series forecasting.
Support the extension and improvement of existing ML libraries and frameworks.
Run experiments and analyze results to improve model performance.
Help monitor and evaluate the performance of production models.
Contribute to team discussions, brainstorming, and problem-solving.
Requirements:
Currently pursuing or recently completed a BSc, MSc, or PhD in Computer Science, Electrical Engineering, Mathematics, Statistics, or a related field.
Strong foundation in math, probability, statistics, and algorithms.
Proficiency in Python and familiarity with ML libraries/frameworks (e.g., PyTorch, TensorFlow, scikit-learn, numpy, pandas).
Good understanding of data structures and software engineering principles.
Strong analytical and problem-solving skills.
Excellent communication skills and ability to collaborate in a team environment.
Nice to Haves:
Previous internship, research, or project experience in machine learning, forecasting, or time-series modeling.
Familiarity with energy systems, climate tech, or optimization problems.
Contributions to open-source ML projects or personal ML research.
What You'll Gain:
Hands-on experience developing ML models with direct impact on renewable energy integration.
Mentorship from experienced ML engineers and researchers.
Exposure to cutting-edge methods in generative forecasting and grid decarbonization.
Opportunity to contribute to meaningful, climate-focused innovation.
Diese Cookies sind für das Funktionieren der Website erforderlich und können in unseren Systemen nicht abgeschaltet werden. Sie können Ihren Browser so einstellen, dass er diese Cookies blockiert, aber dann könnten einige Teile der Website nicht funktionieren.
Sicherheit
Benutzererfahrung
Zielgruppenorientierte Cookies
Diese Cookies werden über unsere Website von unseren Werbepartnern gesetzt. Sie können von diesen Unternehmen verwendet werden, um ein Profil Ihrer Interessen zu erstellen und Ihnen an anderer Stelle relevante Werbung zu zeigen.
Google Analytics
Google Ads
Wir benutzen Cookies
🍪
Unsere Website verwendet Cookies und ähnliche Technologien, um Inhalte zu personalisieren, das Nutzererlebnis zu optimieren und Werbung zu indvidualisieren und auszuwerten. Indem Sie auf Okay klicken oder eine Option in den Cookie-Einstellungen aktivieren, stimmen Sie dem zu.
Die besten Remote-Jobs per E-Mail
Schliess dich über 5'000+ Personen an, die wöchentlich Benachrichtigungen über Remote-Jobs erhalten!