The Offline Driving Intelligence team is responsible for developing Foundation Models for ML Agents and planning, applying them off-vehicle to provide generalization capabilities to simulation and validation. Our team collaborates closely with the Planner, Simulation and Validation teams to develop and validate our driving performance. As an ML Agents and Planning Machine Learning Engineer you will work on the bleeding edge of the industry, developing novel machine learning pipelines and models to predict the behavior of other agents in the world and planning the best course of action for the ego vehicle.
In this role, you will...
You will develop new deep learning models that use imitation learning and reinforcement learning to generate driving plans for human-like agents.
You will work on novel techniques to estimate the quality of those driving plans along the dimensions of safety, progress, comfort and realism.
You will contribute to our large-scale machine learning infrastructure to discover new solutions and push the boundaries of the field
You will develop metrics and tools to analyze errors and understand improvements of our systems
You will collaborate with engineers on Perception, Planning,Simulation, and Validation to solve the overall Autonomous Driving problem.
Qualifications
PhD degree in computer science or related field +1y of professional experience (top tier publications can remove the need for the year of experience) or, MSc +5y of professional experience in a relevant field.
Experience in Planning and / or Prediction using Reinforcement Learning techniques
Experience with training and deploying transformer-based model architectures
Experience with production Machine Learning pipelines: dataset creation, training frameworks, metrics pipelines
Fluency in Python with a basic understanding of C++
Bonus Qualifications
Top tier publications (NeurIPS, ICML, CVPR)
Additional Information
There are three major components to compensation for this position: salary, Amazon Restricted Stock Units (RSUs), and Zoox Stock Appreciation Rights. A sign-on bonus may be offered as part of the compensation package. The listed range applies only to the base salary. Compensation will vary based on geographic location and level. Leveling, as well as positioning within a level, is determined by a range of factors, including, but not limited to, a candidate's relevant years of experience, domain knowledge, and interview performance. The salary range listed in this posting is representative of the range of levels Zoox is considering for this position.
Zoox also offers a comprehensive package of benefits, including paid time off (e.g. sick leave, vacation, bereavement), unpaid time off, Zoox Stock Appreciation Rights, Amazon RSUs, health insurance, long-term care insurance, long-term and short-term disability insurance, and life insurance.
Estas cookies son necesarias para que el sitio web funcione y no se pueden desactivar en nuestros sistemas. Puede configurar su navegador para bloquear estas cookies, pero entonces algunas partes del sitio web podrían no funcionar.
Seguridad
Experiencia de usuario
Cookies orientadas al público objetivo
Estas cookies son instaladas a través de nuestro sitio web por nuestros socios publicitarios. Estas empresas pueden utilizarlas para elaborar un perfil de sus intereses y mostrarle publicidad relevante en otros lugares.
Google Analytics
Anuncios Google
Utilizamos cookies
🍪
Nuestro sitio web utiliza cookies y tecnologías similares para personalizar el contenido, optimizar la experiencia del usuario e indvidualizar y evaluar la publicidad. Al hacer clic en Aceptar o activar una opción en la configuración de cookies, usted acepta esto.
Los mejores empleos remotos por correo electrónico
¡Únete a más de 5.000 personas que reciben alertas semanales con empleos remotos!