We are seeking a quantitative modeler with deep expertise in mortgage credit risk to design and implement advanced statistical and econometric models. This role will focus on loan-level performance modeling (delinquency, prepayment, default, loss given default) and structured mortgage asset valuation. The ideal candidate will combine rigorous quantitative training with hands-on experience in coding, model development, and empirical research.
Build and document models in Python/R/C++, ensuring reproducibility and version control.
Partner with structured finance and risk teams to integrate models into pricing, stress testing, and risk management frameworks.
Research macroeconomic drivers of mortgage performance and their incorporation into stochastic scenario design.
Author technical model documentation and research notes for internal stakeholders, model risk management, and regulators.
Technical Qualifications
Required:
Master’s or Ph.D. in Quantitative Finance, Statistics, Econometrics, Applied Mathematics, or related quantitative discipline.
7+ years of direct experience in mortgage credit risk modeling or structured finance analytics.
Advanced skills in statistical modeling: survival analysis, proportional hazard models, logistic regression, generalized linear models, panel data econometrics.
Strong programming expertise in Python (pandas, NumPy, scikit-learn, statsmodels) or R.
Proficiency in handling big data (SQL, Spark, Snowflake and cloud-based data environments).
Deep knowledge of mortgage credit risk dynamics, housing market fundamentals, and securitization structures.
Preferred:
Experience with Hierarchical models, and Monte Carlo simulation.
Knowledge of machine learning algorithms (e.g., gradient boosting, random forests, neural nets) applied to credit modeling.
Familiarity with stress testing frameworks and regulatory model governance needs.
Background in RMBS cash flow modeling and structured product analytics.
This role is highly technical and research-driven. Candidates should be comfortable working with complex datasets, formulating empirical hypotheses, and coding full modeling pipelines from data ingestion through validation and deployment.
About RiskSpan
RiskSpan is a leading source of analytics, modeling, data, and risk management solutions for the Consumer and Institutional Finance industries. We help financial institutions and regulators solve complex problems involving market, credit, and operational risk. Our clients include top banks, asset managers, servicers, and government-sponsored enterprises.
Estas cookies son necesarias para que el sitio web funcione y no se pueden desactivar en nuestros sistemas. Puede configurar su navegador para bloquear estas cookies, pero entonces algunas partes del sitio web podrían no funcionar.
Seguridad
Experiencia de usuario
Cookies orientadas al público objetivo
Estas cookies son instaladas a través de nuestro sitio web por nuestros socios publicitarios. Estas empresas pueden utilizarlas para elaborar un perfil de sus intereses y mostrarle publicidad relevante en otros lugares.
Google Analytics
Anuncios Google
Utilizamos cookies
🍪
Nuestro sitio web utiliza cookies y tecnologías similares para personalizar el contenido, optimizar la experiencia del usuario e indvidualizar y evaluar la publicidad. Al hacer clic en Aceptar o activar una opción en la configuración de cookies, usted acepta esto.
Los mejores empleos remotos por correo electrónico
¡Únete a más de 5.000 personas que reciben alertas semanales con empleos remotos!